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An effective route to fused hexacyclic derivatives of isoquinoline is described via tandem reaction
of isoquinoline, dialkyl acetylenedicarboxylates, and 3-chloropentane-2,4-dione or alkyl 3-chloro-
acetoacetates.

� 2008 Published by Elsevier Ltd.
Tandem reactions (TRs) that require in situ generation of reac-
tive species, are special types of organic reactions in which the
product is formed by successive reactions. Numerous organic
transformations are the result of TRs. In fact, tandem processes
lead to skeletal changes rather than merely functional group trans-
formations. The secondary reaction for which the structural prere-
quisite is absent in the initial substrate must be triggered by the
first reaction. Important classes of TRs are the Mannich reaction,
the Diels–Alder reaction of benzyne, cycloaddition of ketenes,
and carbene/nitrene insertions.1–7 TRs have become an increas-
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Scheme 1. Synthesis
ingly active area of research, yielding novel chemical scaffolds for
drug discovery efforts.

As part of our current studies on the development of new routes
to heterocyclic systems,8–11 we now report the reaction between
isoquinoline (1) and electron-deficient acetylenic esters 2 in the
presence of 3-chloropentane-2,4-dione (3a) or alkyl 3-chloroace-
toacetates (3b–c) in CH2Cl2, which led to compounds 4a–d in
67–91% yields (based on 1, Scheme 1).12

The structures of compounds 4a–d were deduced from their
elemental analyses and their IR, 1H NMR and 13C NMR spectra,
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and by single-crystal X-ray analysis of 4b. For example, the 1H
NMR spectrum of 4a exhibited seven singlets identified as methyl
(d 1.43 and 2.44), methoxy (d 3.67, 3.71, 3.79, and 4.04), and
methine (d 5.91) protons, along with characteristic multiplets for
Figure 1. X-ray crystal structure of 4b. ORTE
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Scheme 2. Proposed mechanism for
other protons. The 1H-decoupled 13C NMR spectrum of 4a showed
35 distinct resonances, which confirmed the proposed structure.
The IR spectrum of 4a displayed characteristic carbonyl bands
(1730, 1731, 1720, 1698, 1656, and 1637 cm�1). The 1H NMR and
P-III plot;13 arbitrary atom numbering.
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13C NMR spectra of 4b–d were similar to those of 4a except for the
ester moieties, which exhibited characteristic resonances in appro-
priate regions of the spectra.

Unambiguous evidence for the structure and stereochemistry of
4b was obtained from a single-crystal X-ray analysis. An ORTEP13

diagram of 4b is shown in Figure 1. There are two molecules of
4b and two molecules of H2O in the unit cell. The stereochemistry
was deduced from the crystallographic data, and the same config-
uration was assumed for the other derivatives on account of their
NMR spectroscopic similarities.

Although the mechanistic details of the reaction are not known,
a plausible rationalization maybe advanced to explain the product
formation (Scheme 2). Presumably, the zwitterionic intermedi-
ate14–16 formed from isoquinoline and 2 is protonated by 3 to fur-
nish intermediate 6, which is attacked by carbanion 7 to produce 8.
This intermediate is converted to 9, which undergoes a [2+4] cyclo-
addition reaction with 6 to produce 10. Intermediate 10 then
undergoes a series of proton-transfer reactions to generate product
4.

Under similar reaction conditions, di-tert-butyl acetylenedicar-
boxylate (2c) reacts with 1 and 3a to produce compound 13 in 82%
yield (Scheme 3). The 1H NMR spectrum of 13 exhibited five sing-
lets for the tert-butyl (d 1.62 and 1.65), methyl (d 2.18 and 2.68),
and alkene (d 5.32) protons, along with characteristic signals for
the isoquinoline residue. Due to the steric hindrance induced by
the tert-butyl groups, compound 13, unlike 9 (see Scheme 2), does
not undergo a cycloaddition reaction.

In summary, we have reported a transformation involving iso-
quinoline, dialkyl acetylenedicarboxylates, and 1,3-dicarbonyl
compounds, which leads to the diastereoselective synthesis of
functionalized hexacyclic derivatives of isoquinoline. The present
procedure has the advantage that not only is the reaction per-
formed under neutral conditions, but also the reactants can be
mixed without any prior activation or modification.
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